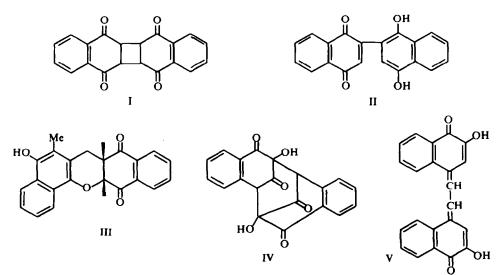
BIQUINONES-III* THE DIMERISATION OF 1,4-NAPHTHAQUINONES

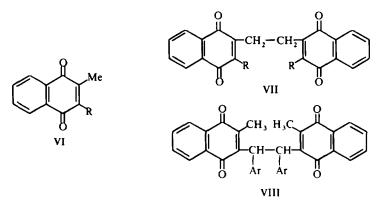
K. CHANDRASENAN and R. H. THOMSON


Department of Chemistry, University of Aberdeen, Old Aberdeen, Scotland

(Received in the UK 21 December 1970; Accepted for publication 4 January 1971)

Abstract—2-Methyl-1,4-naphthaquinones, substituted at C-3 by alkyl, aralkyl, allyl, aryl or halogen groups, react in aqueous ethanolic NaOH to give dehydro-dimers, namely 1,2-bis(1,4-naphthaquinon-2-yl)ethanes. The reaction is analogous to the formation of bibenzyls from nitrotoluenes in basic media. In tBuOH containing tBuOK, 3-benzyl-2-methyl-1,4-naphthaquinone also undergoes oxidation at the benzyl carbon atom to give phthiocol and benzaldehyde, as well as dimer; allyl groups are cleaved similarly. A mechanism is proposed which also accounts for the final stage in the Dam–Karrer colour test for vitamin K.

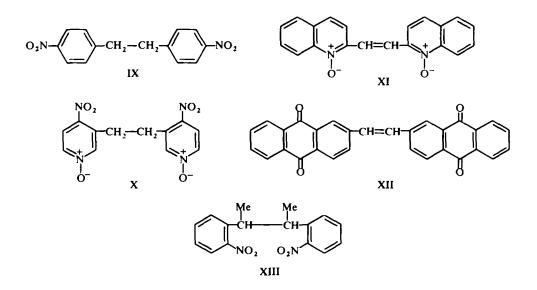
2-Hydroxy-1,4-naphthaquinones are oxidised by persulphate to 2,2'-dihydroxy-3,3'-bi-1,4-naphthaquinonyls.


NAPHTHAQUINONES are known to dimerize in various ways according to the conditions and the structure of the monomer, but the information is scattered and there has been little systematic study of such reactions. For example 1,4-naphthaquinone forms the dimer I on irradiation¹ and II by warming in CH₃COOH containing pyridine.² On the other hand 2,3-dimethyl-1,4-naphthaquinone is converted into III³ and 3-hydroxy-1,2-naphthaquinone into IV⁴ in basic solution. Recent discoveries of naturally occurring binaphthaquinones⁵ have encouraged further investigation of such reactions and we report here two methods for the oxidative dimerisation of 1,4-naphthaquinones which give simple dehydro-dimers.

* Diguinones II, A. J. Shand and R. H. Thomson, Tetrahedron 19, 1919 (1963).

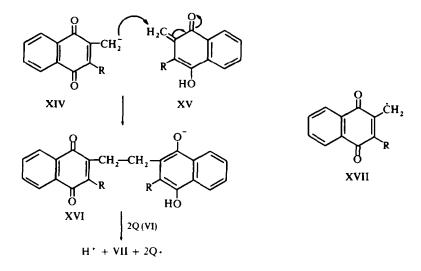
Dimerisation of 2-methyl-1,4-naphthaquinones

Compounds of this type possess a reactive CH_3 group and tend to dimerise under alkaline conditions. This is illustrated by the conversion of 4-methyl-1,2-naphthaquinone into V⁶ merely by keeping in EtOH containing KHCO₃ although the first observation was made by the Bergmanns⁷ who treated 2,3-dimethyl-1,4-naphthaquinone with benzhydryl sodium and obtained *inter alia* two dimers, the binaphthaquinone VII (R = Me) and the compound later shown to be III.³ We have confirmed the formation of VII (R = Me) but it is more conveniently obtained by using excess NaOMe in MeOH-EtOEt whereas III is best prepared by adding a few drops of methanolic KOH to the parent quinone in MeOH. Homologues of 2,3-dimethyl-1,4naphthaquinone showed no tendency to form dimers of type III and all the other 2-methyl-1,4-naphthaquinones we examined gave only simple binaphthaquinones VII.



Treatment of the 2-methyl-1,4-naphthaquinones VI (R = alkyl, aryl, aralkyl, dimethylallyl, halogen, chloromethyl and methoxymethyl) with aq NaOH in cold EtOH gave the dimers VII, usually in 50-60 % yield. Other reaction products were not usually pursued but in some cases (e.g. VI; $R = CHMe_2$) phthiocol (VI; R = OH) could be detected by TLC (see below). A series of colour changes was normally observed and in most cases the reaction was complete in ca. 15 min. by which time the rather insoluble dimer had separated from the solution. Certain dimers (VII; $R = Et, CH_2Ph, CHPh_2$ and Cl) are already known, being made previously either by reaction of the appropriate chloromethylquinone with Ag powder⁸ or by basecatalysed decomposition of an 2-alkyl(or aralkyl)-1,4-naphthaquinone-doazomethane adduct.^{9,10} The dibenzyl analogue VII ($R = CH_2Ph$) has now been synthesised from 3-benzyl-2-chloromethyl-1,4-naphthaquinone and its isomer (VIII; Ar = Ph) likewise from 3- α -chlorobenzyl-2-methyl-1.4-naphthaguinone, by reaction with Ag. The biquinone VII (R = Cl) was also obtained by chlorination of VII (R = H) which was prepared by oxidation of 1,2-di- β -naphthylethane with chromic acid. The structures of other new dimers were established by analysis and MW determinations, and spectroscopic comparison with their monomers.

In halogenoquinones nucleophilic replacement of halogen is normally a facile process and we were surprised to find, in earlier work,¹¹ that the reaction of 3-chloro-2-methyl-1,4-naphthaquinone VI (R = Cl) with NaOMe (1 mol) in MeOH gave a product still containing chlorine; the use of 2 mol of base, however, gave a chlorine-


free compound. Analysis and spectroscopic data now show that the first compound is the biquinone VII (R = Cl) and the second is the dimethoxy analogue VII (R = OMe) which must arise by nucleophilic replacement of chlorine *after* oxidative dimerisation as we were unable to convert VI (R = OMe) into VII (R = OMe). In weakly basic solution there was no significant reaction whereas in strong base hydrolysis occurred to form phthiocol VI (R = OH). Similarly VI (R = Cl), with NaOEt in EtOH, gave VII (R = Cl and OEt), and the compounds VII (R = Br, OMe and OEt) were obtained in the same manner from VI (R = Br). Hydrolysis of VII (R = OMe and OEt) gave "biphthiocol" VII (R = OH) and this too was obtained by oxidative dimerisation of VI (R = Cl) in aqueous ethanolic NaOH. It was of interest to see how the chloromethyl derivative (VI; $R = CH_2Cl$) would behave under similar conditions. In fact, with NaOMe normal nucleophilic displacement afforded the methoxymethyl analogue VI ($R = CH_2OMe$) and with excess base this gave the dimer VII ($R = CH_2OMe$).

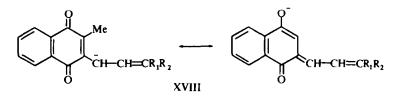
Although these dimerisations are new, analogous reactions are known in which oxidative coupling takes place at an activated CH_3 or methylene group in a basic medium. Examples are the formation of IX^{12} and X^{13} from *p*-nitrotoluene and 3-methyl-4-nitropyridine-1-oxide, respectively, and, under more vigorous conditions conversion of 2-methylquinoline-1-oxide and 2-methylanthraquinone into the

respective stilbenes, XI¹⁴ and XII.¹⁵ There is little doubt that in all these examples the reaction is initiated by formation of a carbanion $ArCH_2^-$ or QCH_2^- (XIV) which accounts for the preferred dimerisation of the dialkylnaphthaquinones on the CH₃ groups (primary carbanion). This is consistent with the failure of 2,3-methyl-1,4-naphthaquinone to form a dimer under the usual conditions although similar dimerisations on a secondary carbon atom have been reported, e.g. XIII¹⁶ is the main product of the reaction of *o*-nitroethylbenzene with KOEt in ethyl oxalate. (The use of strong base is considered later.)

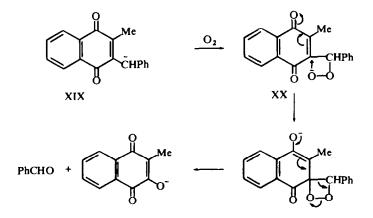
The formation of VII ($\mathbf{R} = \mathbf{Me}$) by base-catalysed decomposition of the 2-methyl-1,4-naphthaquinone-diazomethane adduct has been examined in detail by Dean^{9, 17} and his colleagues but while it was firmly established that VII ($\mathbf{R} = \mathbf{Me}$) was formed by way of the carbanion (XIV) the precise mechanism was difficult to determine. The route most favoured proceeds by Michael addition of XIV to XV (derived from and in equilibrium with XIV) to form XVI which is subsequently oxidised by air and/or the parent quinone to the final product. In the dimerisations VI \rightarrow VII the final oxidation is effected mainly by the starting quinone since in parallel experiments with VI ($\mathbf{R} = CH_2Ph$) yields of 45% and 63% were obtained under nitrogen* and air, respectively. In the former case a red residue (quinhydrone?) gave starting material (24%) on oxidation with AgO. These dimerisations are clearly very similar to the

formation of the bibenzyl IX from *p*-nitrotoluene in basic solution which has been studied at length by Russell and his coworkers.¹⁸ A mechanism similar to the above has been proposed (alternatively, XVI might be derived from a XIV-VI charge transfer complex) the function of oxygen being merely to regenerate the starting material from its radical-anion. However a radical mechanism cannot be completely

$$XIV \xrightarrow{VI}_{or O_2} XVII \longrightarrow VII$$


excluded although we could obtain no positive evidence in support (ESR spectra are swamped by signals from semiquinone radical-anions). Radical coupling was rejected by Russell on the basis that *p*-nitrobenzyl radicals would be scavenged by oxygen[†]

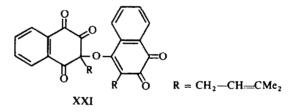
[•] The dimers IX and X can also be obtained from their monomers in the absence of air or added oxidising agent.^{13, 18}


[†] Not necessarily true for XVII. The fact that phenylacetic acid can be oxidized by persulphate in the presence of air to give bibenzyl in substantial amount seems to demonstrate that benzyl radicals can couple in solution despite the presence of oxygen.¹⁹

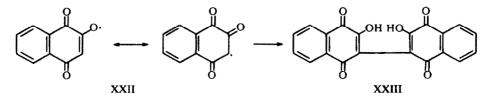
and the possibility that these radicals might be trapped in some way by a rapid reaction with *p*-nitrobenzyl anions was considered. A similar combination of XVII and XIV is a possible alternative route to VII by way of its radical-anion.

When 2-methyl-3-dimethylallyl-1,4-naphthaquinone VI ($R = CH_2CH$ — CMe_2) is treated with base in the usual way the solution becomes blue and then changes to red, and on working-up phthiocol VI (R = OH) can be isolated as well as dimer. The formation of a blue or violet colour in base is characteristic of allylnaphthaquinones²⁰

and has been used as a test (Dam-Karrer reaction) for vitamins K. The colour, which was attributed²¹ to the mesomeric anion XVIII, is also the basis²² of the Kesting²³ and Craven²⁴ tests for guinones. However the colour is transient and changes to brownish red as the anion of phthiocol appears. To examine the bond cleavage further we studied the behaviour of the benzyl analogue VI ($R = CH_2Ph$) which is more convenient to handle than the allyl analogue. Under the usual conditions the benzyl compound VI ($R = CH_2Ph$) gives only a trace of phthiocol but more was obtained using an excess of strong base (tBuOK in tBuOH) which gave a deep blue solution changing to red. The best procedure is to shake the blue solution in oxygen until 1 mol is absorbed although the yield of phthiocol never exceeded 10% (the yields obtained from allylquinones are likewise poor²⁰); benzaldehyde is also formed and the yield of dimer VII ($\mathbf{R} = \mathbf{CH}_2\mathbf{Ph}$) is diminished. Under these conditions a secondary (benzylic) carbanion (XIX*) can be formed which, we suggest, reacts stepwise,²⁵ with oxygen to form a hydroperoxide anion (XX) leading, via a cyclic peroxide to cleavage of a C-C bond and the formation of phthiocol anion and benzaldehyde, as shown below. Alkyl naphthaquinones may be regarded as vinylogous ketones and



* The failure to detect the dimer VIII (R = Ph) which could arise from XIX may reasonably be attributed to steric difficulties as well as competitive reaction with oxygen.


this cleavage reaction is exactly parallel to the behaviour of ketones when autoxidised under alkaline conditions.²⁶ Under milder conditions (exposure to air in a test-tube) the reaction will occur less readily but there is little doubt that the Dam-Karrer anion (XVIII) undergoes oxidative cleavage in the same way. In contrast photolysis²⁷ of an allylnaphthaquinone generates the 3'-hydroperoxide followed by fission of the side chain at the 2'-3' bond.

Dimerisation of 2-Hydroxy-1,4-naphthaquinones

It was noted in 1893 that solutions of lawsone (2-hydroxy-1,4-naphthaquinone) deposited dimeric material on prolonged keeping, and later²⁸ it was shown that the reaction could be effected on a preparative scale by exposing a hot aqueous solution to UV irradiation. The structure of the product XXIII was established by the formation of three isomeric internal anhydrides, one of which gave a mono- and another a di-azine on reaction with *o*-phenylenediamine. It seemed to us that this dimerisation could be achieved using a suitable oxidising agent and, if 2-hydroxy-1,4-naphthaquinone is regarded as an enolised β -diketone, there is ample precedent in the literature for the oxidation of β -diketones to dehydro-dimers. Besides electrolysis.²⁹ the reagents used include K₃Fe(CN)₆,³⁰ Pb(OAc)₄,³¹ PbO₂,³² oxygen,³³ and 2,3-dichloro-5,6-dicyanobenzoquinone,³⁴ the products being carbon-carbon or carbon-oxygen dimers. An analogous carbon-oxygen dimer in the naphthaquinone series is "lapachol peroxide", obtained from lapachol by oxidation with PbO₂,³⁵ and regarded as XXI.³⁶ Probably all these dimers are formed by radical coupling

reactions and previous work with carboxylic $acids^{19, 37}$ suggests that persulphate oxidation of a 2-hydroxy-1,4-naphthaquinone would generate the mesomeric radical XXII capable of coupling at C-3 to form a carbon-carbon or carbon-oxygen dimer. In fact XXIII was obtained in this way from 2-hydroxy-1,4-naphthaquinone in *ca*. 60% yield and the carbon-oxygen dimer was not found. This was first observed by Baillie³⁸ in preliminary experiments and the reaction was subsequently used for the synthesis of the natural biquinone aurofusarin.^{39*} We now find it to be general

• In this paper³⁹ reference 8 should refer to A. C. Baillie and not A. G. Wylie.

1,4-Naphthaquinone	3,3'-Bi-1,4- naphthaquinonyl	Yield (%)	Physical form		Mol. Wt.	
				m.p.	Found	Required
2-Hydroxy	2,2'-Dihydroxy	61	yellow needles	280–281°	346-0486	346-0477
2-Hydroxy-5- methoxy	2,2'-Dihydroxy- 5,5'-dimethoxy	75	orange plates	subl. 225°	406-0693	406-0688
2-Hydroxy-6- methoxy	2,2'-Dihydroxy- 6,6'-dimethoxy	48	orange-yellow needles	257–259°	406-0689	406-0688
2-Hydroxy-7- methoxy	2,2'-Dihydroxy- 7,7-dimethoxy	44	yellow ncedles	262–264°	406-0681	406-0688
6-Bromo-2- hydroxy	6,6'-Dibromo-2,2'- dihydroxy	82	yellow crystals	279–281°	501.8687	501.8689

(see Table 1). The dimers are very similar spectroscopically to the monomers, as expected, but rather insoluble.

TABLE 1 DIMERICATION OF 2-LYDROYY-1 4-NABUTHAOTINONES BY PERSI'I PHATE OVIDATION

EXPERIMENTAL

2-Benzyl-1,4-naphthaquinone. To a solution of 2-benzyl-1-naphthol (10 g) in CH₃COOH (350 ml) was added, with stirring, a soln of CrO₃ (25.6 g) in H₂O (35 ml) and CH₃COOH (130 ml), keeping the temperature between 20° and 30°. After 72 hr the mixture was diluted with H₂O (1.5 l) and left overnight. The ppt was crystallized from MeOH in needles, m.p. 82°, yield 37%. (Found: C, 82.1; H, 5.1. $C_{17}H_{12}O_2$ requires C, 82.2; H, 48%). The *leuco-acetate* crystallised from dilute acetic acid in plates, m.p. 105°. (Found: C, 75.3; H, 5.5. $C_{21}H_{18}O_4$ requires C, 75.7; H, 5.4%).

2-Benzyl-3-chloromethyl-1,4-naphthaquinone. HCl gas was passed into a mixture of 2-benzyl-1,4-naphthaquinone (3 g), CH₃COOH (3 ml) and aq HCHO (30%, 10 ml), for 30 min. The soln became reddish-brown. It was kept overnight, poured into H₂O and the resulting ppt was crystallised from EtOH in yellow plates, m.p. 106°, yield 61 %. (Found : C, 72·7; H, 4·5; Cl, 11·9. $C_{18}H_{13}ClO_2$ requires C, 72·8; H, 4·4; Cl, 12·0%), τ (CF₃CO₂D) 5·80 (s, 2H, Q-CH₂Ph), 5·36 (s, 2H, Q-CH₂Cl) + ArH signals.

3- $(\alpha$ -4-Dichlorobenzyl)-2-methyl-1,4-naphthaquinone. A cooled mixture of 2-methyl-1,4-naphthaquinone (5 g) and p-chlorobenzaldehyde (5 g) in CH₃COOH (50 ml) was treated with HCl for 30 min and set aside overnight. The product obtained on dilution with H₂O, crystallised from EtOAc as yellow plates, m.p. 114-115°, yield 38 %. (Found : C, 65·3; H, 3·6; Cl, 20·9. C₁₈H₁₂Cl₂O₂ requires C, 65·2; H, 3·6; Cl, 21·4%), τ (CF₃CO₂D) 7·79 (s, 3H, Q-CH₃), 3·22 (s, 1H, Q-CH(Cl)Ar) + ArH signals.

3-(4-Chlorobenzyl)-2-methyl-1,4-naphthaquinone. The above dichloroquinone (1 g) in CH₃COOH (40 ml) containing anhydrous NaOAc (1 g) was hydrogenated in the presence of 5% palladised BaSO₄ (0·2 g). After absorption of 2 mols of H₂, the suspension was filtered, and then oxidised by warming for 15 min on a water-bath with a soln of CrO₃ (0·5 g) in H₂O (40 ml). Dilution with H₂O precipitated a yellow solid, the bulk of which crystallised from EtOAc in yellow plates, m.p. 133–134°, yield 80%. (Found: C, 72·7; H, 48; Cl, 11·6. C₁₈H₁₃ClO₂ requires C, 72·8; H, 44; Cl, 12·0%); v_{max} (KBr) 1662, 1598 cm⁻¹, τ (CF₃CO₂D) 7·69 (s, 3H, Q-CH₃), 5·91 (s, 2H, Q-CH₂Ar) + ArH signals. The less-soluble material (15 mg) crystallised from C₆H₆ as yellow prisms, m.p. 250° (v_{max} 1660, 1600 cm⁻¹), of the dimer VIII (Ar = C₆H₄Cl), identical (IR) with that obtained by reaction of the dichloroquinone with Ag (see below).

 $3-(\alpha-Chloro-1-naphthylmethyl)-2-methyl-1,4-naphthaquinone.$ This was obtained, as above, from 2-methyl-1,4-naphthaquinone (5 g) and 1-naphthaldehyde (7 g) by treatment, in CH₃COOH, with HCl. It crystallised from EtOAc as yellow scales, m.p. 150°, yield 48%. (Found: C. 76-2; H, 4-7; Cl, 10-3. C₂₂H₁₅ClO₂ requires C, 76-2; H, 4-3; Cl, 10-2%).

2-Methyl-3-(1-naphthylmethyl)-1,4-naphthaquinone. Hydrogenolysis of the above chloroquinone, followed by chromic acid oxidation, gave a product, most of which crystallised from EtOAc as yellow plates, m.p. 162° , yield 82°_{6} . (Found: C, 84·4; H, 5·3. $C_{22}H_{16}O_2$ requires C, 84·6; H, 5·1°₀); $v_{max}(KBr)$ 1662, 1601 cm⁻¹. The less-soluble fraction (20 mg) separated from C_6H_6 as yellow plates, m.p. 290° (v_{max} 1662, 1600 cm⁻¹), identical (m. m.p., IR) with the dimer obtained by reaction of the chloroquinone with Ag (see below).

3-Methoxymethyl-2-methyl-1,4-naphthaquinone. 3-Chloromethyl-2-methyl-1,4-naphthaquinone (0.5 g) in MeOH (50 ml) was treated with a cold soln of NaOMe (1 mol) in MeOH (10 ml). A bluish-green colour appeared and then faded, and after 5 min the soln was poured into H_2O . The ppt crystallised from MeOH in yellow leaflets, m.p. 95°, yield 56%. (Found: C, 71.8; H, 5.2; OMe, 13.7. $C_{13}H_{12}O_3$ requires C, 72.2; H, 5.6; OMe, 14.4%); v_{max} 1670, 1625, 1600 cm⁻¹.

Binaphthaquinones

These were obtained by two methods: (a) autoxidation in basic soln, (b) by reaction of 2-(α -chloroalkyl)-1,4-naphthaquinones with Ag. The examples below are typical.

(a) To 3-ethyl-2-methyl-1,4-naphthaquinone (200 mg) in EtOH (20 ml) was added 5N aq NaOH (2 ml). The soln turned purple and then blue, and in 5 min the colour had almost vanished and a yellow ppt appeared After 15 min this was collected, and crystallised from CH₃COOH to give 1,2-bis(3-ethyl-1,4-naphthaquinon-2-yl)ethane VII (R = Et) as yellow needles, m.p. 267° (lit.⁸ m.p. 267°) (yield 48%), τ (CDCl₃) 8-78 (t, 6H, Q-CH₂CH₃), 7-19 (m, 8H, Q-CH₂-) + ArH signals. Less-soluble starting quinones were dissolved in EtOH/EtOAc (1:1).

(b) 2-Chloromethyl-3-ethyl-1,4-naphthaquinone (0.5 g) was refluxed in dry C_6H_6 (20 ml) with Ag powder (2 g) for 10 hr, filtered, concentrated and allowed to cool. The binaphthaquinone which separated (yield 60%) had m.p. 267° and was identical (IR, m. m.p.) with that prepared in (a).

The following binaphthaquinones were obtained by both methods from the appropriate starting materials. 1,2-Bis-(3-benzyl-1,4-naphthaquinon-2-yl)ethane. (VII; $R = CH_2Ph$) yellow plates, m.p. 280° (from C_6H_6) (lit.¹⁰ m.p. 273-274°), (Found: C, 82·9; H, 5·4%; M, 522·1824. Calc. for $C_{36}H_{26}O_4$ C, 82·7; H, 5·0%; M, 522·1831); v_{max} (KBr) 1658, 1598 cm⁻¹, λ_{max} (CHCl₃) 270, 330 nm (log ε 4·51, 3·87). Leucoacetate, plates, m.p. 225° (from CH₃COOH). (Found: C, 76·1; H, 5·7. C₄₄H₃₈O₈ requires C, 76·1; H, 5·5%).

When 3-benzyl-2-methyl-1,4-naphthaquinone (200 mg) in EtOH (50 ml) was treated with 10N aq KOH (5 ml) the dimer was obtained in 63 % yield. Also 3-benzyl-2- methyl-1,4-naphthaquinone (500 mg) in EtOH (100 ml) was treated with 10N aq KOH (10 ml) under N_2 and the soln acidified after 5 min. Part of the ppt dissolved in EtOH (20 ml), and the insoluble portion was crystallised from C₆H₆ to give the dimer (45 %). The EtOH soln was evaporated leaving a red residue which was taken up in ether and shaken with AgO to give starting material (120 mg).

3-Benzyl-2-methyl-1,4-naphthaquinone (1 g) in tBuOH (30 ml) was treated with N tBuOK (15 ml) and shaken in an atmosphere of O_2 until 1 mol was absorbed (~5 min), the colour of the soln changing from deep blue to red. The mixture was acidified, diluted with H₂O and extracted with ether. The latter was shaken with aq NaHCO₃ which yielded, after acidification, phthiocol, m.p. 173° (10%) identical (m m.p., IR) with authentic material. On keeping the ethereal soln for some time the dimer VII (R = CH₂Ph) (100 mg) began to separate. Benzaldehyde was identified in the filtrate as its 2,4-dinitrophenylhydrazone.

1,2-Bis-(3-chloro-1,4-naphthaquinon-2-yl)ethane. (VII; R = Cl) yellow leaflets, m.p. 303° (lit.⁸ m.p. 302°). In method (a) NaOMe (>1 mol) in MeOH was used as base. This compound was also prepared[•] as follows: To a solution of 1,2-di-β-naphthylethane (1 g) in CH₃COOH (22 ml) was added CrO₃ (8 g) in H₂O (6 ml) and CH₃COOH (6 ml), in 10 min. The mixture was kept at 60° for 12 hr and then diluted with H₂O. The precipitated 1,2-bis-(1,4-naphthaquinon-2-yl)ethane crystallised from CH₃COOH in yellow needles, m.p. 225–227°, yield 23%. (Found : C, 77·1; H, 4·2. C₂₂H₁₄O₄ requires C, 77·1; H, 4·1%); v_{max} (KBr) 1665, 1598 cm⁻¹, λ_{max} (CHCl₃) 258, 268, 337 nm (log ε 4·52, 4·48, 4·07). Leuco-acetate, needles, m.p. 208–210° (from dilute CH₃COOH). (Found : C, 70·1; H, 5·1. C₃₀H₂₆O₈ requires C, 70·05; H, 5·1%). Chlorine was passed into a soln of the biquinone (100 mg) in CH₃COOH (30 ml) at 25–30° for 2½ hr. The soln was left overnight and poured onto ice to precipitate the colourless tetrachloride (m.p. 251–253°). This (123 mg) in CH₃COOH (25 ml) was refluxed for 1 hr with anhyd. NaOAc (200 mg). Dilution with H₂O gave 1,2bis-(3-chloro-1,4-naphthaquinon-2-yl)ethane, m.p. 303° (from dimethylformamide) (50%), identical (IR, m.m.p.) with that described above.

* With M. R. Akhtar.

Biquinones III

The following binaphthaquinones were made by method (a) only.

1,2-Bis-(3-diphenylmethyl-1,4-naphthaquinon-2-yl)ethane. (VII; $R = CHPh_2$). Lemon-yellow plates, m.p. 318° identical (IR, m.m.p.) with a sample prepared by Dean et al.⁹

1,2-Bis-[3-(4-chlorobenzyl)-1,4-naphthaquinon-2-yl]ethane. (VII; $R = CH_2C_6H_4Cl$). Yellow plates, m.p. 220° (from C_6H_6). (Found: C, 72·9; H, 4·5; Cl, 12·0; M, 590·1056. $C_{36}H_{24}^{35}Cl_2O_4$ requires C, 73·1; H, 4·1; Cl, 12·0%; M, 590·1053), τ (CDCl₃) 7·14 (s, 4H, Q-CH₂CH₂-Q), 5·83 (s, 4H, Q-CH₂-Ar) + ArH signals.

1,2-Bis-[3-(1-naphthylmethyl)-1,4-naphthaquinon-2-yl]ethane. (VII; $R = CH_2C_{10}H_2$). Yellow needles, m.p. 306° (from C₆H₆). (Found: C, 84-5; H, 5-1%; M, 622-2156. C₄₄H₃₀O₄ requires C, 84-9; H, 4-8%; M, 622-2144).

1,2-Bis-(3-p-tolyl-1,4-naphthaquinon-2-yl)ethane. (VII; $R = C_6H_4Me$). Yellow plates, m.p. 2.4° (from C₆H₆). (Found: C, 82.8; H, 5.0%; M, 522-1830. C₃₆H₂₆O₄ requires C, 82.5; H, 5.2%; M, 522-1831), τ (CDCl₃) 7.74 (s, 6H, CH₃—Ar), 7.18 (s, 4H, Q—CH₂CH₂—Q) + ArH signals. Leuco-acetate, leaflets, m.p. 205°. (Found: C, 76.0: H, 5.6 C₄₄H₃₈O₈ requires C, 76.1: H, 5.5 °₀).

1,2-Bis-(3-isopropyl-1,4-naphthaquinon-2-yl)ethane. (VII; R = i-Pr). Yellow needles, m.p. 253' (from C₆H₆). (Found: C, 78-9; H, 6-1%; M, 426-1824. C₂₈H₂₆O₂ requires C, 78-7; H, 6-3%; M, 426-1831), τ (CDCl₃) 8-54 (d, 12H, CH(CH₃)₂), 7-17 (s, 4H, Q—CH₂CH₂—Q), 6-63 (m, 2H, CH(CH₃)₂) + ArH signals. Leuco-acetate. plates, m.p. 240°. (Found: C, 72-0: H, 6-2. C₃₆H₃₈O₈ requires C, 72-2: H, 6-4%).

1.2-Bis-(3- γ -dumethylallyl-1.4-naphthaquinon-2-vl)ethane. (VII; $R = CH_2CH=CMe_2$). This reaction was conducted in EtOH using aq KOH as base. The colour changed from blue to red but the dimer did not precipitate. The soln was acidified and extracted with ether which was shaken with aq NaHCO₃. Acidification of the alkaline soln gave phthiocol (10%) (m.m.p., IR). Concentration of the ether soln gave the dimer which crystallised from EtOAc as yellow rods, m.p. 206° (15%). (Found: C, 80-1; H, 6-6%, M, 478-2133. C₃₂H₃₀O₄ requires C, 80-3; H, 6-3%; M, 478-2144). The biquinone gave a positive Dam-Karrer Test.

1,2-Bis-(3-bromo-1,4-naphthaquinon-2-vl)ethone. (VII: R = Br). Yellow plates, m.p. 290° (from CHCl₃). (Found: C, 52-8; H, 2-4; Br, 32-2%; M, 497-9102. C₂₂H₁₂Br₂O₄ requires C, 52-8; H, 2-4; Br, 32-0%; C₂₂H₁₂⁷⁹Br₂O₄ requires M. 497-9101).

1,2-Bis-(3-methoxy-1,4-naphthaquinon-2-yl)ethane. (VII; R = OMe). This was obtained by treatment of 3-chloro(or bromo)-2-methyl-1,4-naphthaquinone with NaOMe (2 mol)in MeOH. It formed yellow needles, m.p. 212° (EtOAc). (Found : C, 71-7; H, 4-6; OMe, 14-3%; M, 402-1116. C₂₄H₁₈O₆ requires C, 71-6; H, 4-5; OMe, 15-4%; M, 402-1103).

1,2-Bis-(3-ethoxy-1,4-naphthaquinon-2-yl)ethane. (VII; R = OEt). Prepared as above, using NaOEt in EtOH, it crystallised from EtOAc in yellow needles, m.p. 225°. (Found: C, 72.7; H, 5.1; OEt, 19.4%; M, 430.1410. C₂₆H_{2.2}O₆ requires C, 72.6; H, 5.1; OEt, 20.9%; M, 430.1416).

1,2-Bis-(3-hydroxy-1,4-naphthaquinon-2-yl)ethane. (VII; R = OH). 3-Chloro-2-methyl-1,4-naphthaquinone (0-5 g) in EtOH (50 ml) was treated with 5N NaOH (10 ml). After 30 min the red soln was acidified, and the ppt was crystallised from C₆H₆ as yellow plates, m.p. 270°, yield 25%. (Found: C, 704; H, 41%; M, 374-0781. C₂₂H₁₄O₆ requires C, 70-6; H, 3-7%; M, 374-0790); v_{max} (KBr) 3320, 1645, 1594 cm⁻¹ (cf. phthiocol, 3315, 1655, 1598 cm⁻¹). λ_{max} (EtOH) 251, 277, 330 nm (log ε 4-52, 4-50, 3-67) [cf. phthiocol, 251, 277, 330 nm (log ε 4-24, 4-22, 3-38)]. The same compound was obtained by heating the above dimethoxy (or diethoxy) binaphthaquinone with HBr in CH₃COOH.

1,2-Bis-(3-methoxymethyl-1,4-naphthaquinon-2-yl)ethane (VII; $R = CH_2OMe$). This was obtained by autoxidation of 3-methoxymethyl-2-methyl-1,4-naphthaquinone in the usual way and similarly, from 3-chloromethyl-2-methyl-1,4-naphthaquinone using NaOMe (3 and 4 mol respectively) in MeOH. It crystallized from C₆H₆ in yellow needles, m.p. 230°. (Found: C, 72·2; H, 5·3; OMe, 13·1. C₂₆H₂₂O₆ requires C, 72·1; H, 5·1; OMe, 14·4 %): v_{max} (KBr) 1665. 1622. 1598 cm⁻¹.

1,2-Bis-(3-methyl-1,4-naphthaquinon-2-yl)ethane. (VII; R = Me). 2,3-Dimethyl-1,4-naphthaquinone (200 mg) in ether (200 mI) was treated with NaOMe (from 2 g Na) in MeOH (50 ml). After 24 hr the green soln was poured into water and the ether layer was evaporated leaving the biquinone, yellow leaflets. m.p. 269° (from CH₃COOH). A further quantity was obtained by aeration of the aqueous alkaline layer, and acidification, total yield 35%; τ (CDCl₃) 7.63 (s, 6H, Q-CH₃), 7.18 (s, 4H, Q-CH₂CH₂-Q) + ArH signals.

The following binaphthaquinones were prepared by method (b) only.

1,2-Bis-(3-methyl-1,4-naphthaquinon-2-yl)-1,2-diphenylethane. (VIII; Ar=Ph). Lemon-yellow plates, m.p. 318° (from C₆H₆). (Found: C, 82-6; H, 4-9%; M, 522-1840. C₃₆H₂₆O₄ requires C, 82-8; H, 5-0%; M, 522-1831), λ_{max} (CHCl₃) 274, 340 nm (log ε 4-41, 3-81). The same compound was obtained by hydrogenolysis

of 3- α -chlorobenzyl-2-methyl-1,4-naphthaquinone (1 g) in CH₃COOH (40 ml) containing anhyd. NaOAc (1 g) in the presence of 5% palladised BaSO₄ (0·2 g). Working up as before⁸ gave 3-benzyl-2-methyl-1,4-naphthaquinone, λ_{max} (CHCl₃) 274, 340 nm (log ε 4·19, 3·57) (95% yield) which crystallised from EtOH. The residual yellow solid (15 mg), insoluble in EtOH, crystallized from C₆H₆ in yellow plates, m.p. 318°, identical with the dimer reported above. The *leuco-acetate* formed plates, m.p. 245° (CH₃COOH). (Found : C, 75·8; H, 5·6. C₄₄H₃₈O₈ requires C, 76·1; H, 5·5%).

1,2-Bis-(3-methyl-1,4-naphthaquinon-2-yl)-1,2-di-(4-chlorophenyl)ethane. (VIII; $Ar = C_6H_4Cl$). Yellow prisms, m.p. 250° (from C_6H_6). (Found : C, 72.9; H, 4.1; Cl, 12.0; M, 590-1039. $C_{36}H_{24}^{35}Cl_2O_4$ requires C, 73.1; H, 4.1; Cl, 12.0%; M, 590-1053). The same dimer was obtained as a minor product in the hydrogenolysis of 3-(4-chlorobenzyl)-2-methyl-1,4-naphthaquinone (see above).

1,2-Bis-(3-methyl-1,4-naphthaquinon-2-yl)-1,2-di-(1-naphthyl)ethane. (VIII; $Ar = C_{10}H_7$). Yellow plates, m.p. 290° (from C_6H_6). (Found: C, 84-5; H, 4-7: $C_{44}H_{30}O_4$ requires C, 84-9; H, 4-8%). The same compound was obtained as a minor product in the hydrogenolysis of *3-(α -chloro-1-naphthylmethyl)-2-methyl-1,4-naphthaquinone (see above).

Oxidation of 2-hydroxy-1,4-naphthaquinones.[•] The following is typical: to a solution of 2-hydroxy-1,4-naphthaquinone (5 g, 0-028 mole) in H₂O (50 ml) and 4N NaOH (7 ml, 0-028 mole), stirred at 95°, was added potassium persulphate (7-56 g, 0-028 mole) in H₂O (25 ml) during 30 min. The soln was stirred at 95° for 90 min more, cooled, and extracted with CHCl₃ which was dried (Na₂SO₄) and evaporated. The residue was washed well with ether to remove monomer, chromatographed on silica gel-oxalic acid in C₆H₆-HCOOEt (10:3), and crystallized from CH₃COOH to give 2,2'-dihydroxy-3,3'-bi-1,4-naphthaquinonyl in yellow needles, m.p. 280–281° (lit.²⁸ 270–275°), λ_{max} (EtOH) 252, 274, 329 nm (log ε 4-50, 4-42, 3-76), λ_{max} (EtOH/HO⁻) 274, 299, 506 nm (log ε 4-48, 4-38, 3-61), ν_{max} (KBr) 3310, 1675, 1641, 1590 cm⁻¹.

Acknowledgements—We thank Dr. F. M. Dean for a sample and the S.R.C. Physico-chemical Measurements Unit, Aldermaston Section, for mass spectra. One of us (K.C.) thanks the University of Aberdeen for a Studentship.

REFERENCES

- ¹ A. Schönberg, Ahmed Mustafa, M. Z. Barakat, N. Latif, R. Moubasher and Akila Mustafa, J. Chem. Soc. 2126 (1948)
- ² E. Rosenhauer, F. Braun, R. Pummerer and R. Riegelbauer, Ber. Dtsch. Chem. Ges. 70, 2281 (1937)
- ³ K. Chandrasenan and R. H. Thomson, J. Chem. Soc. (C) 123 (1966)
- ⁴ H.-J. Teuber and G. Steinmetz, Ber. Dtsch. Chem. Ges. 98, 666 (1965)
- ⁵ R. H. Thomson, Naturally Occurring Quinones, 2nd Edit., Academic Press, London 1971
- ⁶ W. Bradley and J. D. Sanders, J. Chem. Soc. 480 (1962)
- ⁷ E. Bergmann and F. Bergmann, J. Org. Chem. 3, 126 (1939)
- ⁸ R. H. Thomson, J. Chem. Soc. 1196 (1953)
- ⁹ F. M. Dean, P. G. Jones, R. B. Morton and P. Sidisunthorn, Ibid. 5336 (1963)
- ¹⁰ F. M. Dean and L. E. Houghton, J. Chem. Soc. (C) 722 (1970)
- ¹¹ J. Smith, Ph.D. Thesis, University of Aberdeen, 1959
- ¹² Org. Syn. Coll. Vol. IV, 367.
- ¹³ E. C. Taylor and J. S. Driscoll, J. Org. Chem. 26, 3796 (1961)
- ¹⁴ M. Colonna and L. Zamparella, Gazz. Chim. Ital. 92, 301 (1962)
- ¹⁵ Colour Index (1st edit.) No. 1095.
- ¹⁶ T. Lesiak, Przemysl. Chem. 41, 140 (1962); Chem. Abs. 57, 8530 (1962)
- ¹⁷ F. M. Dean, L. E. Houghton and R. B. Morton, J. Chem. Soc. (C) 1980 (1967); F. M. Dean and L. E. Houghton, *Ibid.* 2060 (1968); F. M. Dean. L. E. Houghton and R. B. Morton. *Ibid.* 2065 (1968)
- ¹⁸ G. A. Russell and E. G. Janzen, J. Am. Chem. Soc. 84, 4153 (1962), 89, 300 (1967); G. A. Russell, A. J. Moye, E. G. Janzen, S. Mak and E. R. Talaty, J. Org. Chem. 32, 137 (1967); G. A. Russell, Pure Appl. Chem. 15, 185 (1967)
- ¹⁹ J. Russell and R. H. Thomson, J. Chem. Soc. 3379 (1962); cf. R. O. C. Norman and P. M. Storey, J. Chem. Soc. (B) 1099 (1970)
- ²⁰ L. F. Fieser, W. P. Campbell and E. M. Fry, J. Am. Chem. Soc. 61, 2206 (1939)
- ²¹ P. Karrer, Helv. Chim. Acta 22, 1146 (1939)
 - With A. C. Baillie and Miss A. Weddell.

- ²² J. A. D. Jeffreys, J. Chem. Soc. 2153 (1959); T. J. King and C. E. Newall, J. Chem. Soc. 974 (1965)
- ²³ W. Kesting, Ber. Dtsch. Chem. Ges. 62, 1422 (1929)
- ²⁴ R. Craven, J. Chem. Soc. 1605 (1931)
- ²⁵ G. A. Russell, E. G. Janzen, A. G. Bemis, E. J. Geels, A. J. Moye, S. Mak and E. T. Strom, Selective Oxidation Processes (R. F. Gould, ed.), p. 112, American Chemical Society, Washington DC, (1965)
- ²⁶ W. E. Doering and R. M. Haines, J. Am. Chem. Soc. 76, 482 (1954)
- ²⁷ C. D. Snyder and H. Rapoport, *Ibid.* **91**, 731 (1969)
- ²⁸ S. C. Hooker, *Ibid.* 58, 1212 (1936)
- ²⁹ S. P. Mulliken, Am. Chem. J. 15, 523 (1893); J. B. Weems, Ibid. 16, 569 (1894); K. M. Johnston and J. D. Stride, Chem. Comm. 325 (1966)
- ³⁰ F. M. Behringer, S. A. Galton and S. J. Huang, *Tetrahedron* 19, 809 (1963); see also O. H. Mattsson and C. A. Wachtmeister, *Acta Chem. Scand.* 22, 79 (1968)
- ³¹ T. A. Spencer, A. L. Hall and C. Fordham von Reyn, J. Org. Chem. 33, 3369 (1968); G. W. K. Cavill and D. H. Solomon, J. Chem. Soc. 4426 (1955)
- ³² A. Wolf, G.P. 876,237; Chem. Abs. 52, 9226 (1958)
- ³³ O. H. Mattsson, Tetrahedron Letters 2489 (1969)
- ³⁴ H.-D. Becker, J. Org. Chem. 30, 989 (1965)
- ³⁵ S. C. Hooker, J. Am. Chem. Soc. 58, 1168 (1936)
- ³⁶ M. G. Ettlinger, *Ibid.* 72, 3472 (1950)
- ³⁷ D. D. Tanner and S. A. A. Osman, *Ibid.* **90**, 6572 (1968); P. M. Brown, J. Russell, R. H. Thomson and A. G. Wylie, J. Chem. Soc. (C) 842 (1968); L. Eberson, S. Gränse and B. Olofsson, *Acta Chem. Scand.* **22**, 2462 (1968)
- ³⁸ A. C. Baillie, Ph.D. Thesis, University of Aberdeen (1966)
- ³⁹ E. Morishita, T. Takeda and S. Shibata, Chem. Pharm. Bull. Tokyo 16, 411 (1968)